ChemSusChem

Supporting Information

Bicarbonate Electroreduction to Multicarbon Products Enabled by Cu/Ag Bilayer Electrodes and Tailored Microenviroments

Jungkuk Lee, Hengzhou Liu, and Wenzhen Li*© 2022 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Figure S1. Product distributions of bicarbonate conversion of CuNaf catalyst on H23 carbon paper. The bicarbonate conversion was performed in MEA-based flow cell with BPM at a current density of 100 mA cm⁻² for 1 h.

Figure S2. Comparison of FE_{CO} of CuNaf and CuAgNaf catalysts on H23 carbon paper. The bicarbonate conversion was performed in MEA-based flow cell with BPM at a current density of 100 mA cm^{-2} for 1 h.

Figure S3. SEM image of bilayer CuSus/AgNaf electrode and corresponding EDX mapping. The carbon signal above the Ag layer is attributed to the epoxy matrix used for sampling.

Figure S4. (a) ¹H NMR and (b) GC spectrum (FID signal) of the liquid and gaseous products, respectively.

Figure S5. *i*-CO₂ formation and its utilization to C_{2+} products of six different electrode configurations during the bicarbonate conversion (100 mAcm⁻² for 1 h).

Figure S6. FE of C_1 and C_{2+} products as function of mass ratio of Sustanion on Cu layer. The Nafion content in Ag layer was maintained at 20 wt.%. The bicarbonate conversion was performed at a current density of 100 mA cm⁻² for 1 h.

Figure S7. Cell voltage profiles of five different configurations of Cu and/or Ag catalysts with different ionomer (Nafion, Sustanion) on H23 carbon paper. The bicarbonate conversion was performed in MEA-based flow cell with BPM at a current density of 100 mA cm⁻² for 1 h.

Figure S8. Comparison of (a) FE (inset: images of contact angle measurement on H23 and 22BB carbon paper without catalyst layer) and (b) cell voltages of bilayer CuSus/AgNaf electrode on H23 and 22BB carbon paper. The bicarbonate conversion was performed in MEA-based flow cell with BPM at a current density of 100 mA cm⁻² for 1 h.

Figure S9. Contact angle measurement of CuSus/AgNaf-P50 after 1 h electrolysis.

Catalysts	CO2 capture solution	Membrane	products	FE (%)	Current density (mA cm ⁻²)	Cell voltages (V)	Ref
CuSus/AgNaf- p50	3 M KHCO ₃	BPM	C2+	41.6	100	3.9	This work
Cu nanoparticles	1 M K ₂ CO ₃	BPM	C ₂₊	10.1	150	n/a	[1]
Cu foam	3 M KHCO ₃ with CTAB	BPM	CH4	34	120	>6	[2]
Ag foam	3 M KHCO3	BPM	СО	59	100	3.6	[3]
Ag nanoparticles	3 M KHCO ₃	BPM	СО	37	100	n/a	[4]
Ag nanoparticles	3 M KHCO ₃	BPM	СО	82	100	n/a	[5]
Electrodeposited Bi	3 M KHCO ₃	BPM	HCOO [−]	64	100	>4	[6]
Ag nanoparticles	2M MEA with 2M KCl	CEM	СО	72	50	– 0.8 vs. RHE	[7]

Table S1. Comparison of eCO₂R performance of state-of-the-art coupled CO₂ capture and reduction systems.

References

- [1] Y. C. Li, G. Lee, T. Yuan, Y. Wang, D.-H. Nam, Z. Wang, F. P. García de Arquer, Y. Lum, C.-T. Dinh, O. Voznyy, E. H. Sargent, *ACS Energy Lett.* **2019**, *4*, 1427-1431.
- [2] E. W. Lees, A. Liu, J. C. Bui, S. Ren, A. Z. Weber, C. P. Berlinguette, ACS Energy Lett. 2022, 1712-1718.
- [3] Z. Zhang, E. W. Lees, F. Habibzadeh, D. A. Salvatore, S. Ren, G. L. Simpson, D. G. Wheeler, A. Liu, C. P. Berlinguette, *Energy Environ. Sci.* **2022**, *15*, 705-713.
- [4] T. Li, E. W. Lees, M. Goldman, D. A. Salvatore, D. M. Weekes, C. P. Berlinguette, *Joule* 2019, *3*, 1487-1497.
- [5] E. W. Lees, M. Goldman, A. G. Fink, D. J. Dvorak, D. A. Salvatore, Z. Zhang, N. W. X. Loo, C. P. Berlinguette, *ACS Energy Lett.* **2020**, *5*, 2165-2173.
- [6] T. Li, E. W. Lees, Z. Zhang, C. P. Berlinguette, ACS Energy Lett. 2020, 5, 2624-2630.
- [7] G. Lee, Y. C. Li, J.-Y. Kim, T. Peng, D.-H. Nam, A. Sedighian Rasouli, F. Li, M. Luo, A. H. Ip, Y.-C. Joo, E. H. Sargent, *Nat. Energy* 2021, *6*, 46-53.