Supporting Information:

Selective Oxidation of 1,2-Propanediol in Alkaline Anion-Exchange Membrane Electrocatalytic Flow Reactors: Experimental and DFT Investigations

David J. Chadderdon,^{‡1a} Le Xin,^{‡a} Ji Qi,^{1a} Brian Brady,^b Julie A. Miller,^b Kai Sun,^c Michael J. Janik,^{*b} Wenzhen Li^{*1a}

 ^a Department of Chemical Engineering Michigan Technological University, Houghton, Michigan 49931, United States
 ^b Department of Chemical Engineering Pennsylvania State University, University Park, Pennsylvania 16802, United States
 ^c Department of Material Science and Engineering University of Michigan, Ann Arbor, Michigan 48109, United States

Email: Wenzhen Li wzli@iastate.edu; Michael J. Janik mjanik@engr.psu.edu

Contents:

- 1. Calculation of conversion, selectivity, and carbon balance
- 2. TEM particle size histograms of Pt/C and Au/C Figure S1
- 3. XRD patterns of self-prepared Pt/C and Au/C Figure S2
- 4. Cyclic voltammograms on Pt/C and Au/C catalysts Figure S3
- 5. Summary of PDO oxidation in AEMFC Table S1
- 6. Summary of PDO oxidation in AEM-electrocatalytic cell Table S2
- 7. ¹H NMR analysis of hydroxyacetone / lactaldehyde equilibrium Table S3, Figure S4
- 8. Optimized intermediate structures and relative energies from DFT Tables S4-S6

Calculation of conversion, selectivity, and carbon balance:

PDO conversion was calculated by eq S1:

PDO Conversion % =
$$\frac{N_{\text{PDO,initial}} - N_{\text{PDO}}}{N_{\text{PDO,initial}}} \times 100\%$$
 (S1)

Where N_{PDO} is the amount of PDO (moles) determined by HPLC. Product selectivity was calculated as a molar fraction of total identified products by eq S2:

Product selectivity
$$\% = \frac{N_i}{\sum_i N_i} \times 100\%$$
 (S2)

Where N_i is the amount of product species *i* (moles). Total carbon balances were calculated to confirm that the majority of products had been identified, given by eq S3:

Carbon balance
$$\% = \frac{3N_{PDO} + 3N_{C3} + 2N_{C2} + N_{C1}}{3N_{PDO,initial}} \times 100\%$$
 (S3)

Where N is the molar amount of PDO, C_3 , C_2 , or C_1 products.

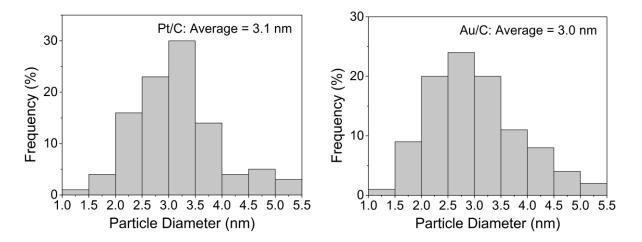


Figure S1. TEM particle size histograms of Pt/C (left) and Au/C (right)

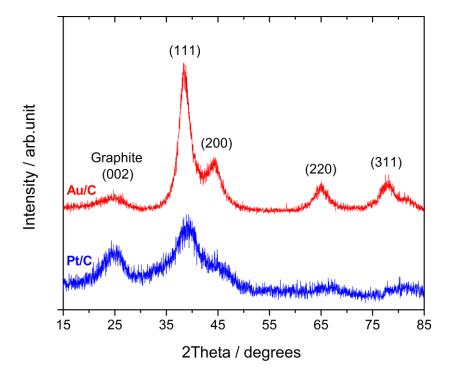
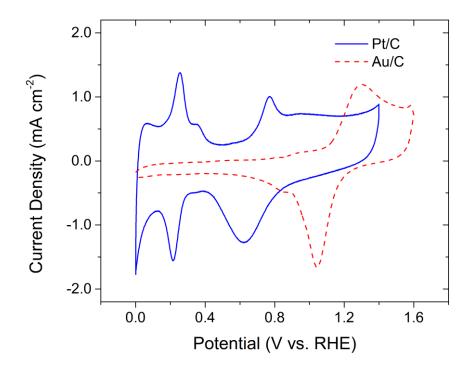



Figure S2. XRD patterns of self-prepared Pt/C and Au/C catalysts.

Cyclic Voltammograms on Prepared Catalysts:

Cyclic voltammetry was performed in a glass electrochemical reactor (AFCELL3, Pine Instruments) in a three-electrode-configuration controlled by a potentiostat (Versastat MC, Princeton Applied Research). Electrolyte was nitrogen purged 1.0 KOH. Potential sweep rate was 50 mV s⁻¹. Catalysts were dispersed in isopropanol by ultrasonication to form a uniform ink (1.0 mg mL⁻¹). With a microsyringe, 20 μ l of ink were deposited onto a mirror polished glassy carbon rotating disk electrode (Pine Instruments, 5.0 mm diameter). A Hg/HgO (1.0 M KOH) reference electrode and platinum-wire counter electrode were used. Tests were conducted at room temperature.

Figure S3. Cyclic voltammograms recorded with a sweep rate of 50 mV s⁻¹ on Pt/C and Au/C catalyst in 1.0 M KOH.

Detailed Product Analysis of PDO oxidation in AEM-based Reactors:

catalyst	PDO conversion (%)	lactate (%)	pyruvate (%)	acetate (%)	formate (%)	carbon balance (%)
Pt/C	20.4	86.8	0.4	12.1	0.7	98.9
Au/C	6.4	42.3	29.7	25.9	2.1	97.3
_						

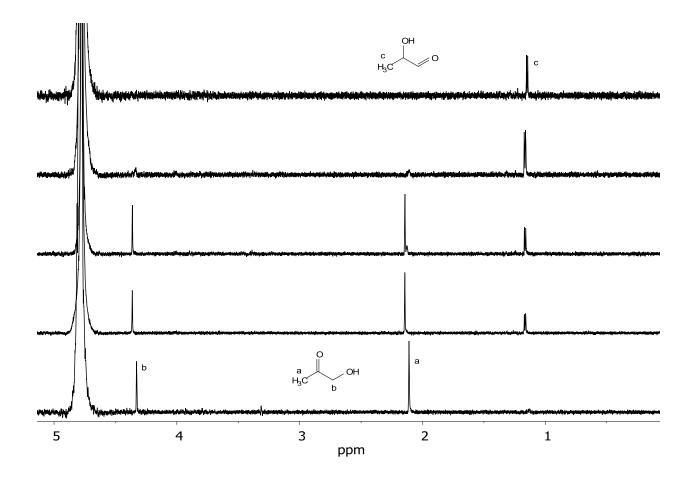
Table S1. PDO Oxidation in AEMFC^a

^{*a*} two hour reaction, cell voltage = 0.1 V.

catalyst	applied potential (V vs RHE)	PDO conversion (%)	lactate (%)	pyruvate (%)	acetate (%)	formate (%)	carbon balance (%)
Pt/C	0.2	3.8	88.0	0	6.2	5.8	97.1
	0.3	4.8	86.0	0	8.0	6.0	97.1
	0.4	7.2	90.0	0.3	8.7	1.0	95.8
	0.5	7.7	89.4	0.5	9.9	0.2	96.7
	0.6	10.5	86.8	1.0	11.6	0.6	95.5
	0.7	12.3	85.7	1.2	12.4	0.7	96.3
Au/C	0.35	1.6	49.0	20.1	28.0	2.9	98.9
	0.4	1.9	47.5	33.3	17.5	1.7	99.4
	0.5	7.8	36.9	47.8	14.9	0.4	95.5
	0.6	8.3	35.1	53.5	11.3	0.1	96.7
	0.7	9.2	35.3	54.5	10.0	0.2	93.4
	0.75	12.5	33.2	55.9	10.8	0.1	95.2

 Table S2. PDO Oxidation in AEM-Electrocatalytic Cell^a

^{*a*} one hour reaction


¹H NMR Analysis of Hydroxyacetone / Lactaldehyde Equilibrium:

¹H NMR spectra were collected with a Bruker 600 MHz NMR (AVIII6000) for the analysis of a 1 mM hydroxyacetone solution in deuterium oxide at various pH, and the results are shown in Table S3. Concentrations of KOH or HClO₄ were varied and ionic strength was held constant at 0.1 M by the addition of KCl. At pH 12 (0.01 M KOH) the equilibrium strongly favored lactaldehyde with a ratio of 10.3 to 1, and at pH 13 hydroxyacetone was below the detection limit. In contrast, at pH 11 (0.001 M KOH) and in neutral solution (0.1 M KCl) the species were found in relatively equal amounts with a hydroxyacetone/lactaldehyde ratio of 0.62–0.65. In acidic solution (0.1 M HClO₄) the equilibrium strongly favored hydroxyacetone. ¹H NMR spectra are shown in Figure S4.

	(IVIIC / HIIII)	, 515 01 11 juli	oxyaccione	Lactalden jue L	quinorium	
		¹ H NMR signal	S	[hydroxyacetone]	[lactaldehyde]	
solution	4.33 ppm	2.11 ppm	1.16 ppm	(M)	(M)	K ratio ^{<i>a</i>}
0.1 M KOH	0	0	3	0	0.001	-
0.01 M KOH	0.28	0.16	3	9.667×10^{-5}	0.001	10.34
0.001 M KOH	1.17	1.82	1.17	0.0005958	0.00039	0.65
0.1 M KCl	1.27	1.93	1.19	0.0006392	0.0003967	0.62
 0.1 M HClO ₄	2.03	2.98	0.16	0.001004	$5.333\times 10^{\text{-5}}$	0.05

Table S3. ¹H NMR Analysis of Hydroxyacetone / Lactaldehyde Equilibrium

^{*a*} molar ratio of hydroxyacetone to lactaldehyde at equilibrium

Figure S4. ¹H NMR (600 MHz, D_2O) of 1 mM hydroxyacetone with varying amounts of KOH or HClO₄. Ionic strength held constant at 0.1 M with KCl. Solutions contain (bottom to top): 0.1 M HClO₄, 0.1 M KCl, 0.001 M KOH, 0.01 M KOH, and 0.10 M KOH. Note, no signal is expected for H bound to C-2 on lactaldehyde as the isomerization in D_2O would incorporate ¹H NMR silent ²H at that position.

Table S4. Optimized intermediate structures and relative energies (eq 2) along the path of PDO oxidation on the Au(111) surface. Most favorable structures of a given intermediate are in bold. Energies in this table were determined with a 3x3x1 Monkhorst-Pack k-point mesh, and single-point energies with 4x4x1 mesh are included for preferred structures.

Step Number	Structure Name	Structure	Relative Energy at 0.75 V* (eV)
0	0A		
0	0B		
1	1A		0.08
1	1B		0.00 (0.00)
1	1C		0.03 (0.02)
1	1D		0.06

2	2A	0.87
2	2D	-1.54
2	2E	-1.47
2	2F	-1.56
2	2G	-1.58
2	2H	-1.58 (-1.46)
2	21	0

2	2J	-0.02
2	2K	-1.13
2	2L	-1.29
2	2M	-1.15
2	2N	-1.16
2	20	-1.17
2	2P	-1.34 (-1.21)

2	2Q	-1.47
2	2R	-1.56
3	3A	-0.34
3	3B	-0.37
3	3C	-0.33
3	3D	-0.55
3	3E	-0.58

3	3F	-1.01
3	3G	-0.99
3	3Н	-0.98
3	31	-0.99 (-0.89)
3	3J	-0.77
3	3К	-0.65
3	3L	-0.64

3	3М	-0.83
3	3N	-0.11
3	30	-0.06
3	3P	-1.42 (-1.34)
3	3Q	-1.36
3	3R	-1.42
3	38	-1.26

4	4A	-1.61
4	4 B	-1.68 (-1.55)
4	4C	-1.51
4	4D	-0.98
4	4E	-1.09
4	4F	-2.81
4	4G	-2.81

4	4H	-2.85
4	41	-2.88 (-2.75)
4	4J	-2.81
4	4K	-2.75
4	40	-2.28
5	5A	-0.9
5	5B	-0.89

5	5C	-0.89
5	5D	-0.82
5	5E	-2.34
5	5F	-2.34
5	5G	-2.43 (-2.40)
5	5H	-2.19
5	51	-2.41

5	5J	-2.05
5	5K	-2.12
5	5L	-1.72
5	5M	-1.95
5	5N	-1.9
5	50	-1.87
5	5P	-1.37

5	5Q	-1.36 (-1.36)
6	6A	-3.38 (3.25)
6	6B	-3.38
6	6C	-3.22

Step Number	Structure Name	energies by compariso 2C End	1C End	Relative Energy at 0.75 V* (eV)
1	1A			0.85
1	1B			0.04
2	2A			0.58
2	2B			-0.17
3	3A			-0.23

Table S5. Optimized Structures of Fragments Considered Following C-C Dissociation of C_3 Intermediates on the Au(111) Surface. Relative energies (eq 2) are included, allowing calculation of dissociation energies by comparison with species energies in Table S3.

3	3B	0.14
4	4A	-0.79
4	4B	-0.84
5	5A	0.00
5	5B	-2.16
6	6A	-2.20

Step Number	Structure Name	Structure	Relative Energy at 0.75 V* (eV)
0	0A		
0	0B		
1	1A		0.07
1	1B		0.00
2	2A		-0.78

Table S6. Optimized Intermediate Structures and Relative Energies (eq 2) Along the Path of PDO Oxidation on the Pt(111) Surface.

2	2B	-1.01
3	3A	-1.92
3	3B	-1.62
4	4A	-2.26
4	4B	-1.10

5	5A	-2.71
5	5B	-1.42
6	6A	-2.80