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Abstract
A novel polyaniline nanofibre supported platinum (Pt) nanoelectrocatalyst is
developed for direct methanol fuel cells (DMFCs). Polyaniline nanofibres
(PaniNFs) with a 60 nm diameter are synthesized by a scalable interfacial
polymerization without the use of a template or functional dopant. PaniNF
supported Pt electrocatalyst (Pt/PaniNFs) and carbon black supported Pt
electrocatalyst (Pt/C) are prepared by an ethylene glycol (EG) reduction
method. The Pt nanoparticles deposited onto PaniNFs have a smaller
diameter (1.8 versus 2.3 nm by XRD) and narrower particle size distribution
(1.5–3 nm versus 1–5 nm by TEM) than the Pt nanoparticles deposited onto
carbon black. The Pt/PaniNFs catalyst shows a higher electrochemical active
surface area (ECSA) and higher methanol oxidation reaction (MOR) catalytic
activity than the Pt/C.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, direct methanol fuel cells (DMFCs) have been
attracting enormous research interest as portable power sources
because of their high energy density, fuel portability, and
low operating temperature [1, 2]. However, poor methanol
oxidation at the anode and methanol crossover from the
anode to cathode remain to be two of the main challenges
for the commercial application of DMFC [3]. The origin
of the poor methanol oxidation is the sluggish electro-
oxidation of adsorbed carbon monoxide, an intermediate of
the anodic methanol oxidation. To improve the anode catalyst
performance, there are two major strategies [3]. First, new
catalyst materials must continue to be explored. Various Pt-
based binary, ternary, and even quaternary compounds are
being intensively investigated to increase the catalytic activity
of methanol oxidation [2–5]. Second, catalytic supporting
materials must be developed to achieve high dispersion,
utilization, activity, and stability [3]. This approach is

1 Author to whom any correspondence should be addressed.

particularly important for lowering the fuel cell cost by
reducing the use of expensive Pt-based noble metal catalysts.
A suitable supporting material must be stable in acid media,
have good electric conductivity, and high specific surface area.
An anisotropic morphology is also helpful in improving mass
transport properties in the catalyst layer. Motivated by these
considerations, we study here the use of polyaniline nanofibres
(PaniNFs) as an electrocatalyst support.

Over the past several years, the majority of the
electrocatalyst support research has focused on the use
of carbon materials [6–16]. Recently, attention has
also been given to the use of conductive polymers as
electrocatalyst supports and promising results have been
obtained [17–19]. By suitably combining conductive polymer
and metal nanoparticles, new electrocatalysts, with higher
surface areas and enhanced methanol oxidation activity, can
be generated. These composite materials have demonstrated
low electrical resistance in the polymer matrix during
electrochemical processes [20]. In this study, we chose
polyaniline because it (i) is easy to synthesize in an aqueous
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medium, (ii) is stable over a relatively wide potential
range, (iii) has a high accessible surface area, and (iv) is
a good electron conductor. Many studies have explored
the polyaniline supported metal nanoparticles for catalysis
and sensor applications [18, 21–25]. It has been shown
that nanostructured polyanilines can significantly enhance the
charge transport across the electrode/electrolyte interface and
thus the electronic conductivity [20, 25–29]. The first attempt
of the use of polyaniline tubes (200 nm outer diameter) in fuel
cells showed promise [26], however, several barriers remain to
be overcome. (1) Polyaniline tubes were large in diameter and
prepared by the hard template (alumina membrane) method,
which increases catalyst cost and makes scale-up difficult.
(2) The Pt particles deposited by the electrodeposition method
have a large particle size (>20 nm), whereas a small Pt particle
size (<5 nm) is desired for reducing Pt loading and improving
catalytic activity. It has been found that it is always difficult to
obtain small and uniform Pt particles by the electrodeposition
method [3]. These considerations make it clear that a simple
and scalable synthesis method for polyaniline nanofibre or
nanotube, and a deposition method for producing small Pt
nanoparticles (<5 nm) must be developed for the application
of polyaniline as catalyst support in DMFC.

To address these concerns, the following study details
a scalable synthesis method that produces thin polyaniline
nanofibres (60 nm), and a novel technique for the deposition
of small Pt nanoparticles (1–3 nm) on polyaniline nanofibres.
Specifically the polyaniline nanofibres were prepared by
interfacial polymerization without the need of a template or
functional dopant [30, 31]. The Pt nanoparticles (1–3 nm) were
then attached to the polyanaline nanofibres using an ethylene
glycol (EG) reduction method. The methanol oxidation
reaction (MOR) activity of Pt nanoparticles supported on
polyaniline nanofibres (Pt/PaniNFs) was then compared with
carbon black (Vulcan XC-72) supported Pt catalyst (Pt/C).

2. Experimental section

2.1. PaniNFs synthesis

All chemicals were of analytical grade and used as received
from Aldrich. Polyaniline nanofibres were synthesized through
an interfacial method [30]. 3.2 mmol aniline was added
to 20 ml chloroform in a 100 ml glass vial. Ammonium
peroxydisulfate (0.8 mmol) was dissolved in 20 ml of 1 M
sulfuric acid in a 50 ml glass vial. Then the ammonium
peroxydisulfate solution was poured into the aniline solution
and kept at room temperature overnight. The polyaniline
nanofibres were collected by filtration (Whatman Nylon
Membranes, 200 nm filter) followed by washing with 500 ml
double de-ionized (DDI) water.

2.2. Pt/PaniNFs preparation

As shown in figure 1, Pt/PaniNFs and Pt/C catalysts were
prepared by an ethylene glycol (EG) reduction method. The
preparation method is briefly described below using PaniNFs
as an example. 140 mg of PaniNFs was suspended in
20 ml of ethylene glycol and stirred under sonication for
10 min. A 30 ml solution of hexachloroplatinic acid in EG
(2.0 mg Pt ml−1 EG) was added to the solution drop-wise

H2PtCl6 in EG + PaniNFs in EG

Pt(OH)4 colloids
- PaniNFs

Stir, pH control

Pt colloids
- PaniNFs

140 oC

Stir, pH control

Pt/PaniNFs in EG

Filtrate
Wash
Dry

Pt/PaniNFs

H2PtCl6 in EG + PaniNFs in EG

Pt(OH)4 colloids
- PaniNFs

Stir, pH control

Pt colloids
- PaniNFs

140 oC

Stir, pH control

Pt/PaniNFs in EG

Filtrate
Wash
Dry

Pt/PaniNFs

Figure 1. Schematic illustration of Pt/PaniNFs preparation
procedures using the EG method.

under mechanical stirring and the stirring was continued after
the Pt precursor addition for 4 h. A NaOH solution (2.5 M
in EG) was added to adjust the pH of the solution to above
13, and then the solution was heated to 140 ◦C and kept there
for 3 h. Refluxing conditions were used to keep the water
in the synthesis system. The whole preparation process was
conducted under flowing argon. When the solution was cooled
down to room temperature, 1 M aqueous H2SO4 was used to
adjust the pH to 2. The whole solution was then kept overnight.
The product was filtered and washed with 1.5 l of DDI water
(80 ◦C) and then dried at 70 ◦C for 8 h. The filtrated solvent was
clear and the weight calculation showed the Pt conversion was
nearly 100% during the deposition process and the Pt/PaniNFs
catalysts have a metal loading of 30 wt%.

2.3. Physical characterization of Pt/PaniNFs and Pt/C

PaniNFs, Pt/PaniNFs and Pt/C powders were characterized
by x-ray diffraction (XRD) on a Bruker D8 Advance
Diffractometer using Cu Kα radiation with a Ni filter. The tube
current was 40 mA with a tube voltage of 40 kV. The 2θ regions
between 20◦ and 85◦ were explored at a scan rate of 5◦ min−1.
Transmission electron microscopy (TEM) was carried out on
a PHILIPS CM300 operating at 200 kV. Scanning electron
microscopy (SEM) was conducted on a PHILIPS XL30-FEG
with an operating voltage of 7.5 kV.

2.4. Electrochemical characterization of Pt/PaniNFs and Pt/C

The methanol oxidation reaction (MOR) activity of the
Pt/PaniNFs and Pt/C catalyst was conducted in a rotating disc
electrode (RDE) setup using an Ag/AgCl reference electrode,
and a platinum wire counter electrode. The RDE working
electrode was prepared as follows. A mixture containing 8 mg
of Pt/PaniNFs powder and 4 ml of ethanol was ultrasonically
blended in a glass vial for half an hour. A volume of 10 μl of
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(A) (B)

(C) (D)

Figure 2. Scanning electron microscopy (SEM) image of PaniNFs (A) and transmission electron microscope (TEM) images of PaniNFs ((B),
(C)) and Pt/PaniNFs (D).

this ink was spread on the surface of a vitreous carbon RDE
(0.196 cm2) using a microsyringe and dried in a convection
oven at 80 ◦C for about 10 min to obtain a thin active layer.
After drying, about 10 μl of 0.1 wt% Nafion solution was
added using the syringe. Finally, DDI water was added on the
catalyst surface to check if air bubbles occur. Care was taken to
make sure that no bubble formed on the surface. To confirm the
reproducibility of the results, three electrodes were prepared
and tested for each catalyst. The cyclic voltammetry (CV)
tests were obtained in 0.5 M H2SO4 after nitrogen bubbling
for 10 min. The scan range was from −0.15 to 1.15 V versus
Ag/AgCl and the scan rate was 50 mV s−1. For MOR, it
was obtained in 0.5 M H2SO4 and 2 M CH3OH solution after
nitrogen bubbling for 10 min. The scan range was from −0.1
to 1.0 V versus Ag/AgCl and the scan rate was 50 mV s−1.

3. Results and discussion

The SEM image (figure 2(A)) shows that uniform PaniNFs
with a diameter about 60 nm were fabricated successfully by
the interfacial polymerization method. The fibres were also
examined by TEM (figures 2(B) and (C)). A typical TEM
image of the Pt/PaniNFs is shown in figure 2(D). Comparing
the TEM images of PaniNFs (figures 2(B) and (C)) with
Pt/PaniNFs (figure 2(D)), it is clear that the Pt nanoparticles
were deposited on the PaniNFs successfully. Typical TEM
images of Pt/C show that Pt nanoparticles with a diameter from

1 to 5 nm were uniformly dispersed onto the carbon black
(Pt/C) (figures 3(A) and (C)). In contrast, smaller and more
uniform Pt nanoparticles (1.5 to 3 nm) were deposited onto the
PaniNFs (figures 3(B) and (D)), which is possibly due to the
unique surface properties of the PaniNFs.

The XRD patterns were collected for the Pt/PaniNFs and
Pt/C samples and are shown in figure 4(A). The diffraction
peak observed at 2θ < 35◦ is attributed to the carbon and
polyaniline supports. The diffraction peaks at 2θ > 35◦ show
that Pt nanoparticles are present in the face-centred cubic (fcc)
structure, as indicated by the characteristic peaks of (111),
(200), (220) and (311). The mean Pt particle size for the Pt/C
and Pt/PaniNFs catalysts was calculated from the broadening
of the (220) diffraction peaks using the Scherrer equation.

d = kλ

B2θ cos θ
(1)

where k is a coefficient (0.9), λ is the wave length of the x-ray
(1.540 56 Å), B2θ is the full-width half-maximum of respective
diffraction peak (rad), and θ is the angle at the position of peak
maximum (◦).

The calculated mean Pt particle sizes for Pt/C and
Pt/PaniNFs are 2.3 nm (figure 4(B)) and 1.8 nm (figure 4(C)),
respectively. The XRD results are consistent with the TEM
observations (figures 3(C) and (D)). Both the XRD and the
TEM results suggest that by using the PaniNFs, smaller and
more uniform Pt nanoparticles can be produced.
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Figure 3. Transmission electron microscope (TEM) images of Pt/C (A) and Pt/PaniNFs (B); histogram of Pt nanoparticle diameter of Pt/C
(C) and Pt/PaniNFs (D).
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Figure 5. Cyclic voltammograms for Pt/C (a) and Pt/PaniNFs (b) in
nitrogen saturated H2SO4 (0.5 M) by a rotating disc electrode system
at a scan rate of 50 mV s−1.

Figure 5 shows the cyclic voltammetry (CV) plot of Pt/C
and Pt/PaniNFs. The Pt/PaniNFs catalyst produced a higher
current than Pt/C in the hydrogen region (−0.15–0.2 V versus
Ag/AgCl). This result is believed to be due to the higher
dispersion and smaller Pt nanoparticles of the Pt/PaniNFs
catalyst. The area of adsorption or desorption of atomic
hydrogen on the curve of the cyclic voltammogram has been
frequently used to estimate the surface area of catalysts. The
cathodic and the anodic peaks appearing between −0.15 and
0.2 V versus Ag/AgCl originated from H-adsorption and H-
desorption in acidic media. By using the charge passed for
H-desorption QH, the electrochemically active surface area
(ECSA) of platinum can be estimated [32]:

ECSA = QH

m · c
(2)

where QH is the charge for hydrogen desorption (mC cm−2),
m is the Pt loading (mg cm−2) in the electrode, and c is
the charge required to oxidize a monolayer of hydrogen on
Pt (0.21 mC cm−2). The electrochemical active areas of
platinum of Pt/PaniNFs and Pt/C electrode calculated by the
above equation are 68.7 and 51.1 m2 g−1, respectively. The
Pt/PaniNFs have larger ECSA than Pt/C, mainly due to the
smaller and more uniform Pt nanoparticles and the possibly
special morphology and properties of PaniNFs.

Methanol oxidation reaction (MOR) activity in a half
cell configuration using an RDE setup (figure 6) shows
the variation of performance of methanol oxidation current
densities with Pt/C (curve a) and Pt/PaniNFs (curve b).
The voltammetric features are in good agreement with the
literature [6, 33–36], in which the typical methanol oxidation
current peak on Pt catalyst is at about 0.70 V versus Ag/AgCl
in the forward scan. It is evident that for the Pt/PaniNFs,
the methanol oxidation starts at lower potential and the
forward anodic peak current density of methanol oxidation
is nearly 2 times higher than the Pt/C. In other words, the
Pt/PaniNFs catalyst can generate higher currents, and thus have
a higher specific activity than Pt/C catalysts. In the reverse
scan, an anodic peak current density was detected at around
0.47 V, which is primarily associated with the removal of
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Figure 6. Cyclic voltammograms of Pt/C (a) and Pt/PaniNFs (b) in
1 M CH3OH + 0.5 M H2SO4, at a scan rate of 50 mV s−1.

the incompletely oxidized carbonaceous species formed in the
forward scan [37, 36, 38–40]. These carbonaceous species are
mostly in the form of linearly bonded Pt=C=O, which are
oxidized in the reaction of the backward scan peak:

PtOHad + Pt=C=O → CO2 + 2Pt + H+ + e−.

Hence, the ratio of the forward anodic peak current density
(If) to the reverse anodic peak current density (Ib), If/Ib, can be
used as an index of the catalyst tolerance to the carbonaceous
species [35–39]. A higher If/Ib ratio indicates better oxidation
of methanol to carbon dioxide during the anodic scan and less
accumulation of carbonaceous residues on the catalyst surface.
The If/Ib ratio of Pt/PaniNFs is 1.90, higher than that of
the Pt/C catalyst (0.93), which demonstrates better tolerance
of Pt/PaniNFs. The better catalytic activities and tolerance
may be attributed to the unique properties and morphology
of PaniNFs, which are still unclear at this time, and further
investigations are needed. The half cell results suggest that
Pt/PaniNFs catalysts would be a good anode catalyst candidate
for DMFC.

4. Conclusions

In summary, polyaniline nanofibres with a diameter of 60 nm
were prepared by a scalable chemical polymerization method.
A novel Pt/PaniNFs nanoelectrocatalyst with smaller and more
uniform Pt nanoparticles was successfully synthesized by
the EG reduction method. The Pt/PaniNFs catalyst shows
higher electrocatalytic activity and catalyst tolerance for the
methanol oxidation reaction than that of the Pt/C catalyst. The
Pt/PaniNFs is a promising candidate for the anode catalyst of a
DMFC.
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