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Figure S1. SEM-EDS of CuPt/Cu catalysts. (a) SEM image of CuPt/Cu electrode. (b) EDS of 

the entire region of (a). (c-e) The corresponding elemental mappings of Cu, O, and Pt.   
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Figure S2. SEM-EDS of CuAu/Cu catalysts. (a) SEM image of CuAu/Cu electrode. (b) EDS 

of the entire region of (a). (c-e) The corresponding elemental mappings of Cu, O, and Au.  
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Figure S3. SEM-EDS of CuAg/Cu catalysts. (a) SEM image of CuAg/Cu electrode. (b) EDS of 

the entire region of (a). (c-e) The corresponding elemental mappings of Cu, O, and Ag. This data 

is adopted from our previous work.[1]  
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Figure S4. SEM-EDS of CuPd/Cu catalysts. (a) SEM image of CuPd/Cu electrode. (b) EDS of 

the entire region of (a). (c-e) The corresponding elemental mappings of Cu, O, and Pd.  
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Figure S5. Characterization of CuPt/Cu catalysts. (a)-(c) SEM images. (d) XRD pattern. (e) 

XPS Cu 2p3/2 and (f) auger Cu LM spectra. (g)-(h) Cyclic voltammograms (CV, 2nd cycle) on Cu 

foam and CuPt/Cu. (i) Double-layer capacitance (Cdl), which was calculated on Cu-based 

electrodes at non-Faradaic regions (−0.80 VRHE). The roughness factor of CuPt/Cu is 4.9, based 

on the slope normalization to Cu foam in (i).   

 

 



7 

 

Figure S6. Characterization of CuAg/Cu catalysts. (a)-(c) SEM images. (d) XRD pattern. (e) 

XPS Cu 2p3/2, (f) auger Cu LM, and (g) Ag 2p spectra. (h)-(i) Cyclic voltammograms (CV, 2nd 

cycle) on Cu foam and CuPt/Cu. (i) Double-layer capacitance (Cdl), which was calculated on Cu-

based electrodes at non-Faradaic regions (−0.80 VRHE). The roughness factor of CuAg/Cu is 5.8, 

based on the slope normalization to Cu foam in (i).   
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Figure S7. Characterization of CuAu/Cu catalysts. (a)-(c) SEM images. (d) XRD pattern. (e) 

XPS Cu 2p3/2, (f) auger Cu LM, and (g) Au 4f spectra. (h)-(i) Cyclic voltammograms (CV, 2nd 

cycle) on Cu foam and CuPt/Cu. (i) Double-layer capacitance (Cdl), which was calculated on Cu-

based electrodes at non-Faradaic regions (−0.80 VRHE). The roughness factor of CuAu/Cu is 22.3, 

based on the slope normalization to Cu foam in (i).   
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Figure S8. Characterization of CuPd/Cu catalysts. (a)-(c) SEM images. (d) XRD pattern. (e) 

XPS Cu 2p3/2, (f) auger Cu LM, and (g) Ag 2p spectra. (h)-(i) Cyclic voltammograms (CV, 2nd 

cycle) on Cu foam and CuPt/Cu. (i) Double-layer capacitance (Cdl), which was calculated on Cu-

based electrodes at non-Faradaic regions (−0.80 VRHE). The roughness factor of CuPd/Cu is 13.1, 

based on the slope normalization to Cu foam in (i).   
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Figure S9. Control experiment of electrolysis with furfuryl alcohol on CuPt/Cu electrode. (a) 

LSV and (b) CA curves on CuAgglv/Cu electrode. The current density at 0.4 VRHE is due to the 

background double layer charging-discharging.  

 

 

 

 

 
Figure S10. Hypothesized schematic illustration of a hydrogen spillover pathway on CuPd/Cu 

and CuPt/Cu electrodes. Similar hydrogen spillover mechanisms were reported in other 

electrochemical reactions by using bimetallic catalysts, such as hydrogen evolution reaction.[2] 
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Figure S11. HOR on different catalysts. (a) HOR on commercial nanoparticles: Pt/C, Pd/C, 

Ag/C, and Au/C. (b) HOR on CuPt/Cu and CuAg/Cu electrodes. HOR was conducted in 1.0 M 

KOH with H2 purging (100 mL min−1).  
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Figure S12. Characterization of Cu-based bimetals post-electrolysis. (a)-(l) Cyclic 

voltammograms (CV, 2nd cycle), double-layer capacitance (Cdl), and SEM images on CuM/Cu 

electrodes: CuPt/Cu, CuAg/Cu, CuAu/Cu, and CuPd/Cu. (m) Summary of the roughness factors 

before and after electrolysis. The electrolysis was conduced at 0.2 VRHE for half-hour.  
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Figure S13. Current density – time profiles of half-hour electrolysis on four kinds of bimetals.  

 

 

 
Figure S14. Activation energy for EOD on CuPt/Cu at 0.1 VRHE. (a) Linear sweep 

voltammograms of CuPt/Cu in 1.0 M KOH with 200 mM furfural at different temperatures. The 

geometric area of CuPt/Cu was 1 cm2. (b) Arrhenius plot for EOD on CuPt/Cu at 0.1 VRHE.  
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Figure S15. Durability tests in the MEA-based flow cell with four kinds of Cu-based 

bimetals as anode: (a)-(b) CuAg/Cu; (c)-(d) CuAu/Cu; (e)-(f) CuPt/Cu; (g)-(h) CuPd/Cu. The 

current density – time profiles, and the summary of current density and activity decrease in each 
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1-hour cycle were shown in this Figure. The activity decrease percencentage is calculated by the 

equation, as follows:  

Activity decrease percentage = 
𝑖𝑛

𝑖𝑛−1
 

 

Where in and in-1 are the current densities at the n and n-1 cycle of 1-hour electrolysis.  

 

 

 

 
Figure S16. Physical characterization of CuPt/Cu electrode after long-term electrolysis. (a)-

(b) SEM images. (c)-(d) Cyclic voltammograms (CV, 2nd cycle) and double-layer capacitance (Cdl) 

on CuPt/Cu electrode. (e) XPS Cu 2p3/2 and O1s spectra of CuPt/Cu electrode after long-term 

electrolysis of 5 cycles of 1-hour tests.  
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Figure S17. Physical characterization of CuPd/Cu electrode after long-term electrolysis. (a)-

(b) SEM images. (c)-(d) Cyclic voltammograms (CV, 2nd cycle) and double-layer capacitance (Cdl) 

on CuPt/Cu electrode. (e) XPS Cu 2p3/2 and O1s spectra of CuPd/Cu electrode after long-term 

electrolysis of 5 cycles of 1-hour tests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

Table S1. Calculation of EOD reaction on CuM/Cu electrodes at 0.2 VRHE for half-hour 

electrolysis. 

a. EOD-produced furoic acid = total furoic acid – Cannizzaro produced furoic acid (= 

quantified furfuryl alcohol). 

b. The conversion of furfural in half-hour included three parts: Cannizzaro reaction, EOD 

reaction, and the degradation of furfural.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anode 
Charge 

(C) 

furfuryl 

alcohol 

(mM) 

Total furoic 

acid (mM) 

EOD-

produced 

furoic acid 

(mM) a 

FE of 

furoic acid 

from EOD 

(%) 

Conversion 

(%) b 

CuAg/Cu 103.8 20.4 119.6 99.2 112.8 65.4 

CuAu/Cu 116.3 22.6 119.5 96.9 97.8 68.9 

CuPd/Cu 161.9 20.1 145.0 124.9 93.4 70.3 

CuPt/Cu 176.2 22.6 160.6 137.9 98.3 80.2 
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Table S2. Comparison of the EOD performance on various electrodes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anodic reactant Anode Anode product j (mA cm−2) 
Potential (V vs. 

RHE) 
Ref. 

 

furfural 

 

Cu foam 

furoic acid and H2 

 

100 0.31 [3] 

H-PdCu ANs 25 ~0.60 [4] 

Pt-Cu 236 0.27 [5] 

Cu(OH)2/Cu foam 100 0.40 [6] 

CuAgglv/Cu 209 0.40 [7] 

CuPt/Cu 357 0.40 
This 

work 

HCHO 
PdNP/Pd 

formic acid and H2 
28 0.5 [8] 

CF@Cu-NS 120 0.4 [9] 
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