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Dimethyl 1,2,3,4-tetrahydronaphthalene-2,7-dicarboxylate (THN)

A solution of methyl coumalate (644 mg, 4.2 mmol) in 10 mL of methanol was slowly
added to a solution of methyl 4-(pyrrolidin-1-yl)cyclohex-3-ene-1-carboxylate (1.14 g, 5.5
mmol) in 2 mL of methanol at ambient temperature. The mixture was stirred for 2 h and
quenched with 1M HCI solution. The mixture was extracted with ethyl acetate 3 times
and dried by NaySO,. Purification by column chromatography afforded the product as light
yellow oil.

Dimethyl naphthalene-2,7-dicarboxylate (2,7-N)

To a solution of Dimethyl 1,23 4-tetrahydronaphthalene-2,7-dicarboxylate (THN) (99.4
g, 0.4 mol) in 1.2 L of chloroform at room temperature under argon, N-Bromosuccinimide
(146 g, 0.82 mol) and Azobisisobutyronitrile (660 mg, 4 mmol) was added, and argon was
sweeping through the mixture for 20 minutes. The solution was stirred under reflux for 8
h. After cooling down to room temperature, triethylamine (230 mL, excess) was added, and
was stirred for additional 2 h. 1.5 M HCI solution was added to neutralize the amine. The
mixture was extracted by DCM then dried over NapSOy. The crude oil was recrystallized

from hexane twice to afford the product as light yellow crystal.
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Figure S1: Step-growth polycondensation of PET and naphthalate-based polymers via two-
step polymerization
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Figure S2: Illustrative example of intrinsic viscosity plot of PET using phenol/1,1,2,2-

tetrachloroethane (60/40) as solvent with solution concentrations of roughly 0.05 g/dL, 0.11
g/dL, 0.18 g/dL and 0.30 g/dL, respectively
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Figure S3: GPC analysis of various polymers produced in this study: PET (black); 2,7 PEN
(red); 27 PETHN (blue); PEI (green); and 2,6 PEN (purple)
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Figure S4: 'H NMR spectra of PET and naphthalate-based polymers
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Figure S5: ATR-FTIR spectra of PET, PEI, and naphthalate-based polymers
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Figure S6: Stress—strain curves at room temperature: (a) PET; (b) 2,7 PEN; (c¢) 2,7 PETHN;
(d) PEL and (e) 2,6 PEN
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Figure S7: 'H NMR spectra of naphthalate-based precursors
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Figure S8: GC-MS data for showing high purity of 27BHEN (the hydroxyl end group was
capped by silane agent)
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Figure S9: GC-MS data for showing high purity of 27BHTHN (the hydroxyl end group was
capped by silane agent)
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